API Reference: Adapters
udspy.adapter
Adapter for formatting LLM inputs/outputs with Pydantic models.
Classes
ChatAdapter
Adapter for formatting signatures into OpenAI chat messages.
This adapter converts Signature inputs into properly formatted chat messages and parses LLM responses back into structured outputs.
The adapter handles both streaming and non-streaming responses: - For streaming: Call process_message() for each chunk, then finalize() - For non-streaming: Call process_message() once with the complete response
Source code in src/udspy/adapter.py
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 | |
Functions
__init__()
finalize(signature)
async
Finalize streaming response and validate outputs.
Must be called after processing all streaming chunks.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
Signature defining expected outputs |
required |
Returns:
| Type | Description |
|---|---|
tuple[dict[str, Any], list[Any], str]
|
Tuple of (outputs, native_tool_calls, completion_text) |
Raises:
| Type | Description |
|---|---|
AdapterParseError
|
If outputs don't match signature or parsing fails |
Source code in src/udspy/adapter.py
finalize_tool_calls(tool_calls_accumulator)
Convert accumulated tool calls to ToolCall objects.
Parses JSON arguments and creates properly formatted ToolCall instances.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tool_calls_accumulator
|
dict[int, dict[str, Any]]
|
Dictionary of accumulated tool call data |
required |
Returns:
| Type | Description |
|---|---|
list[Any]
|
List of ToolCall objects |
Raises:
| Type | Description |
|---|---|
AdapterParseError
|
If tool call arguments are not valid JSON |
Source code in src/udspy/adapter.py
format_field_structure(signature)
Format example field structure with type hints for the LLM.
Shows the LLM exactly how to structure inputs and outputs, including type constraints for non-string fields. This helps the LLM understand what format each field should use (e.g., integers, booleans, JSON objects).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The signature defining input/output fields |
required |
Returns:
| Type | Description |
|---|---|
str
|
Formatted string showing field structure with type hints |
Source code in src/udspy/adapter.py
format_inputs(signature, inputs)
Format input values into a message.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The signature defining expected inputs |
required |
inputs
|
dict[str, Any]
|
Dictionary of input values |
required |
Returns:
| Type | Description |
|---|---|
str
|
Formatted input string |
Source code in src/udspy/adapter.py
format_instructions(signature)
Format signature instructions and field descriptions for system message.
This now only includes the task description and input/output field descriptions, without the output formatting structure (which is moved to the user message).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The signature to format |
required |
Returns:
| Type | Description |
|---|---|
str
|
Formatted instruction string for system message |
Source code in src/udspy/adapter.py
format_output_instructions(signature)
Format instructions for how to structure output fields in JSON.
This generates the part that tells the LLM how to respond with output fields as a JSON object.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The signature defining expected outputs |
required |
Returns:
| Type | Description |
|---|---|
str
|
Formatted output instructions string |
Source code in src/udspy/adapter.py
format_tool_schema(tool)
Convert a Tool object or Pydantic model to OpenAI tool schema.
This is where provider-specific schema formatting happens. The adapter takes the tool's normalized schema and converts it to OpenAI's expected format.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tool
|
Any
|
Tool object or Pydantic model class |
required |
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
OpenAI tool schema dictionary in the format: |
dict[str, Any]
|
{ "type": "function", "function": { "name": str, "description": str, "parameters": dict # Full JSON schema with type, properties, required } |
dict[str, Any]
|
} |
Source code in src/udspy/adapter.py
format_tool_schemas(tools)
Convert Tool objects or Pydantic models to OpenAI tool schemas.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tools
|
list[Any]
|
List of Tool objects or Pydantic model classes |
required |
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
|
List of OpenAI tool schema dictionaries |
Source code in src/udspy/adapter.py
format_user_request(signature, inputs)
Format complete user request with inputs and output instructions.
This combines the input values with instructions on how to format outputs, creating a complete user message that tells the LLM what data it has and how to respond.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The signature defining inputs and outputs |
required |
inputs
|
dict[str, Any]
|
Dictionary of input values |
required |
Returns:
| Type | Description |
|---|---|
str
|
Formatted user request string combining inputs + output instructions |
Source code in src/udspy/adapter.py
parse_outputs(signature, completion)
Parse LLM completion into structured outputs.
Expects JSON format matching the signature's output fields.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The signature defining expected outputs |
required |
completion
|
str
|
Raw completion string from LLM (should be JSON) |
required |
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dictionary of parsed output values |
Raises:
| Type | Description |
|---|---|
AdapterParseError
|
If completion is not valid JSON |
Source code in src/udspy/adapter.py
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 | |
process_chunk(chunk, module, signature)
async
Process an LLM streaming chunk.
This method processes streaming chunks and yields StreamEvent objects. After processing all chunks, call finalize() to get validated outputs.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
chunk
|
ChatCompletionChunk
|
ChatCompletionChunk from streaming LLM |
required |
module
|
Any
|
Module instance |
required |
signature
|
type[Signature]
|
Signature defining expected outputs |
required |
Yields:
| Type | Description |
|---|---|
Any
|
StreamEvent objects (ThoughtStreamChunk, OutputStreamChunk, etc.) |
Source code in src/udspy/adapter.py
process_tool_call_deltas(tool_calls_accumulator, delta_tool_calls)
Process tool call deltas from streaming response.
Accumulates tool call information across multiple chunks, handling incremental updates to tool call names and arguments.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tool_calls_accumulator
|
dict[int, dict[str, Any]]
|
Dictionary mapping tool call index to accumulated data |
required |
delta_tool_calls
|
list[Any]
|
List of tool call delta objects from the current chunk |
required |
Source code in src/udspy/adapter.py
reset_parser()
split_reasoning_and_content_delta(response_or_chunk)
Split reasoning and content delta from a streaming chunk.
This handles provider-specific reasoning formats:
- OpenAI: choice.delta.reasoning (structured field)
- AWS Bedrock:
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
response_or_chunk
|
ChatCompletion | ChatCompletionChunk
|
ChatCompletion or ChatCompletionChunk from streaming LLM |
required |
Returns:
| Type | Description |
|---|---|
str
|
Tuple of (reasoning_delta, content_delta) where: |
str
|
|
tuple[str, str]
|
|
Source code in src/udspy/adapter.py
validate_outputs(signature, outputs, native_tool_calls, completion_text)
Validate that outputs match the signature.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
Signature defining expected outputs |
required |
outputs
|
dict[str, Any]
|
Parsed output fields |
required |
native_tool_calls
|
list[Any]
|
Tool calls from LLM |
required |
completion_text
|
str
|
Raw completion text |
required |
Raises:
| Type | Description |
|---|---|
AdapterParseError
|
If outputs don't match signature |
Source code in src/udspy/adapter.py
StreamingParser
Parse streaming responses and generate StreamEvent objects.
This parser processes streaming chunks from the LLM, handling: - Content deltas (JSON output fields) - Tool call deltas - Reasoning deltas
It yields StreamEvent objects as they occur and provides finalized outputs at the end.
Source code in src/udspy/adapter.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | |
Functions
__init__(adapter, module, signature)
Initialize streaming parser.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
adapter
|
ChatAdapter
|
ChatAdapter instance for parsing logic |
required |
module
|
Any
|
Module instance for creating stream events |
required |
signature
|
Any
|
Signature defining expected outputs |
required |
Source code in src/udspy/adapter.py
finalize()
async
Finalize parsing and return outputs, tool calls, and completion text.
Returns:
| Type | Description |
|---|---|
tuple[dict[str, Any], list[Any], str]
|
Tuple of (outputs, native_tool_calls, completion_text) |
Raises:
| Type | Description |
|---|---|
AdapterParseError
|
If parsing fails |
Source code in src/udspy/adapter.py
process_chunk(chunk)
async
Process a streaming chunk and yield StreamEvent objects.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
chunk
|
ChatCompletionChunk
|
ChatCompletionChunk from the LLM |
required |
Yields:
| Type | Description |
|---|---|
Any
|
StreamEvent objects (ThoughtStreamChunk, OutputStreamChunk, etc.) |
Source code in src/udspy/adapter.py
reset_content_accumulator()
Reset the JSON content accumulator.
Called when reasoning is completed and we're about to parse actual output fields.
Source code in src/udspy/adapter.py
Functions
translate_field_type(field_name, field_info)
Translate a field's type annotation into a format hint for the LLM.
This function generates a placeholder with optional type constraints that guide the LLM on how to format output values for non-string types.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
field_name
|
str
|
Name of the field |
required |
field_info
|
FieldInfo
|
Pydantic FieldInfo containing annotation |
required |
Returns:
| Type | Description |
|---|---|
str
|
Formatted string like "{field_name}" with optional type constraint comment |
Examples:
For str: "{answer}" For int: "{count}\n # note: the value you produce must be a single int value" For bool: "{is_valid}\n # note: the value you produce must be True or False" For Literal: "{status}\n # note: the value you produce must exactly match one of: pending; approved"